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A striking size dependence of the mean-square displacement of diffusing par- 
ticles in the two-dimensional lattice gas of hard squares has been observed by 
Monte Carlo simulation. It is shown that the size effect is due to the formation 
of a stable cage structure in small lattices when the particle concentration is 
high. The formation of cages is governed by a new type of percolation problem 
related to bootstrap percolation. 
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1. I N T R O D U C T I O N  

It has been shown in a previous publication (1) that the hard-square lattice 
gas with Kawasaki diffusion dynamics at higher concentrations has 
dynamical properties which are qualitatively similar to those of under- 
cooled liquids near the glass transition. The extreme slowing down with 
increasing concentration and the apparent absence of a sharp blocking 
transition for the self-diffusion in this model correspond to the observed 
nearly unlimited increase of viscosity and relaxation time and the rounding 
of the freezing transition in undercooled liquids. (2) Moreover, the impor- 
tance of geometrical constraints makes the hard-square lattice gas a model 
for highly cooperative dynamics, a concept which so far has been described 
mainly on intuitive and phenomenological grounds. (3'4) In this paper, we 
show how such cooperativity causes a striking size dependence of self- 
diffusion, as studied by Monte Carlo simulation. 

The hard-square lattice gas is defined by the rule that not only the 
single sites, but also nearest-neighbor pairs of sites of a square lattice may 
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be occupied by at most one particle. The second restriction simulates a 
square-shaped hard core of the particles. As a consequence, the maximum 
concentration is Cmax=0.5. At this concentration all the particles are 
located on one of the two possible sublattices in a checkerboardlike 
arrangement. (There is an order-disorder phase transition at c = 0.37.) The 
particles are allowed to jump to nearest-neighbor sites. However, a particle 
can jump only if the occupation rule is also fulfilled after the jump. This 
implies that three nearest-neighbor sites to the destination site must be 
empty. If particles happen to be aligned on a diagonal of the lattice without 
gaps, then all the particles within such a chain block each other mutually. 
Only the particles at the ends may move if they are not hindered by other 
particles. Moreover, if such diagonal lines having no mobile particle at the 
ends are arranged in such a way that they form closed rectangles, they 
remain stable under the diffusion process. Thus, all the particles enclosed 
by the rectangles cannot escape from such "cages", and the diffusion is 
blocked as long as a cage exists. In lattices of finite size, cages may be 
indefinitely stable. The probability for the existence of a stable cage 
structure increases with increasing particle concentration, and decreases 
with increasing system size. 

The paper is organized as follows: After reviewing the data on self-dif- 
fusion from ref. 1, the results on the size effect are presented in Section 3. 
In Section 5 the origin of the size effect is explained in terms of cage 
percolation, which is described in Section 4. A rigorous proof is given in 
the Appendix that for this type of percolation problem no threshold at an 
intermediate concentration exists. 

2. S E L F - D I F F U S I O N  IN BULK 

In Fig. 1 the coefficient of self-diffusion in bulk is plotted for higher 
densities as a function of concentration. (Since nearest neighbors are for- 
bidden, the highest possible concentration of particles on the square lattice 
is c=0.5 . )  The coefficient of self-diffusion is obtained from the linear 
portion of the mean-square displacement curves calculated in ref. 1. The 
data extend to a maximum concentration of c = 0.415 only, since for higher 
concentrations bulk properties are not obtained for our lattice size of 
128 x 128. As shown in the figure, for concentrations ranging from c = 0.35 
to this maximum concentration, the data follow the formula 

( a )  D,(c)  oc exp 0 .5--c  (1) 

with a = 1.03 _+ 0.03. Our result is reminiscent of Doolittle's formula {5~ for 
the density dependence of the fluidity (i.e., inverse of the viscosity) of 
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Fig. 1. Concentration dependence of the self-diffusion coefficient D s in bulk for c ~> 0.3. Inset: 
Linear plot including low concentrations. Do is the free-particle diffusion constant. 

polymers and might suggest that the self-diffusion in the hard-square lattice 
gas can be explained using the free-volume concept. (6) Indeed, with the 
simplest assumption that the amount of free volume per site is given by 
0.5 - c (which is the concentration of holes in the most densely packed con- 
figurations), the free-volume idea leads to the functional form of Eq. (1). 

In free-volume theory the only characteristic length is the average dis- 
tance between the units of free volume which are required for molecular 
mobility. In our case this length would be d =  ( 0 . 5 - c )  -u2. Accordingly, 
one would expect the self-diffusion in the hard-square lattice gas to become 
size dependent only when d is of the order of the linear dimension L of the 
lattice. Even for a relatively small lattice with L = 32 this condition is 
fulfilled only at very high concentration (d=  32 at c = 0.499). Therefore, the 
strong size dependence of self-diffusion at much lower concentrations 
reported below must be related to a different characteristic length which is 
much longer. Arguments will be given that this length arises from a new 
type of percolation problem ("rectangular-cluster percolation") which 
determines whether a stable cage structure exists in a finite lattice. 

We note that a similar situation occurs for the two-spin-facilitated 
kinetic Ising model. (7,s) In this model the spin-flip kinetics is restricted by 
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the rule that (on the square lattice) only spins with at least two up-spin 
nearest neighbors are allowed to flip. According to Fredrickson, (9) the 
dependence of the average spin relaxation rate on the up-spin concentra- 
tion can be fitted by Adam and Gibbs free-entropy theory. (3'2) However, 
the characteristic length of the Adam-Gibbs  theory defined by 

Sc( d) = k B (2) 

where Sc is the configurational entropy in a system of linear dimension d, 
again is very small except for very low up-spin concentrations and does not 
explain the size dependence of the spin relaxation rate studied by 
Nakanishi and Takano. (1~ According to these latter authors, the observed 
size effect is related to the correlation length of a bootstrap percolation 
problem (with m = 3; see refs. 11-13). 

3. THE  SIZE EFFECT 

Figure 2 shows the mean-square displacement ( (Ar)2) t  in lattices 
of four different sizes for times up to 8 x 105 MCS/particle. The concen- 
tration is c--0.415. An enormous size dependence is observed. At 
t=2000  MCS/particle, e.g., the mean-square displacement in the small 
16 x 16 lattice amounts to only 3.5% of that found in the lattice of size 
128 x 128. This size effect is so surprising since it occurs at times at which 
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Size dependence of mean-square displacement at very short times (c =0.415). 

the particles have traveled only over a short distance compared with the 
linear dimensions L of the lattices. On three curves in Fig. 2 the points are 
marked where the mean displacement is only 1/20 of L. As shown in Fig. 3, 
the size dependence even persists at the shortest times of the order of 
1 MCS/particle. 

In very general terms, the fact that the particles "feel" the presence 
of the boundaries long before having traveled over distances comparable 
to the lattice size may be interpreted as a striking manifestation of 
"cooperativity." Apparently a strong correlation between particle motions 
must exist in regions extending over the entire lattice. The concrete 
mechanism by which the size effect occurs is suggested by the analysis of 
the geometrical constraints controlling diffusion in the hard-square lattice 
gas: In lattices of finite size the diffusing particles may be locked in cages 
formed by other particles. (1) Since particles forming the cages block each 
other mutually, perfect cages are infinitely stable. The probability for the 
existence of stable cages increases with concentration, but decreases with 
increasing size of the lattice. We propose that the size effect observed in the 
self-diffusion results from the size dependence of the probability for the 
existence of a stable cage structure. 

We now mention some details of our Monte Carlo calculations. The 
curves for the mean-square displacement were obtained by averaging over 
different runs which start from different initial configurations. The number 
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of runs averaged over was 7 for L = 512, 30 for L = 256, 90 for L = 64 and 
128, and higher for smaller lattice sizes. The initial configurations were 
prepared as described in ref. 1. Before the displacements of the particles 
were recorded, a period of 50,000 MCS/particle was allowed for ther- 
malization. We tested whether our results depend on the length of the ther- 
malization period. For our highest concentration c = 0.415 we found that in 
a lattice of size L = 512 the mean-square displacements are higher by about 
4% if the thermalization period is extended to 150,000 MCS/p. An increase 
to 250 000 MCS/p, however, did not change the results further. Because of 
the very slow thermalization at c--0.415, therefore, our Monte Carlo data 
are accurate only to within about 5%. At lower concentrations there is no 
problem with the length of the thermalization period. 

4. P E R C O L A T I O N  OF CAGES 

The problem of calculating the probability for the existence of a stable 
cage structure is simplified by the fact that only configurations with par- 
ticles on one particular sublattice of the square lattice need to be con- 
sidered. Using this fact, the cage problem can be formulated as a new type 
of percolation problem for this sublattice, which we termed "rectangular- 
cluster percolation." It is assumed that all particles may be placed ran- 
domly on this sublattice. ~1) The rectangular clusters are defined as the 
smallest rectangles in which the clusters formed by nearest neighbors can 
be embedded. It has been shown t14) that the rectangular-cluster percolation 
problem defines a cellular automaton, in which all particles with a certain 
neighborhood of vacancies are successively removed. The condition for 
removal is that three neighboring vacant sites and the site occupied by the 
particle are the corners of a unit square of the square lattice. Accordingly, 
in the terminology of Adler et al., ~5) the rectangular-cluster percolation 
problem can be classified as a diffusion percolation problem of type c3n. 

The desired probability in the cage problem is the complement of the 
probability for the percolation of rectangular clusters covering the holes 
on the partially filled sublattice. ~) The hole concentration relative to the 
sublattice is given by ch-- 1 - 2 c ,  where c is the particle concentration on 
the full square lattice. In the Appendix we prove that for any nonzero value 
of ch the rectangular clusters percolate in the thermodynamic limit L --* oo. 
For any particle concentration c < 0.5, therefore, in sufficiently large lattices 
at most an incomplete and unstable local cage structure can exist. The 
dependence of the probability to percolate p of the rectangular clusters on 
L defines a characteristic length ~p by 

p(ch,  L = ~ )  = P (3) 
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Fig. 4. Characteristic lengths of the rectangular-cluster percolation problem as a function of 
hole concentration c h = 1 -  2c. Data are shown as points. Lines are only guides to the eye. 

Figure 4 shows the concentration dependence of this length obtained for 
P =  0.1, 0.5, and 0.9, respectively. Apparently, the data are compatible with 
finite-size scaling. (16) 

We note that the slight bending of the curve for P =  0.1 points to a 
divergence of the characteristic length at a finite hole concentration 
c h = 0 . 0 4 .  (I4) This result, which is in conflict with the proven absence of a 
finite percolation threshold, implies that in the rectangular-cluster percola- 
tion problem asymptotic behavior is not reached even for L as large as 
20,000. It is important for the comparison of the hard-square lattice gas 
model with the two-spin facilitated kinetic Ising model that this bending is 
absent in the corresponding curve for the m =  3 bootstrap percolation 
problem. (1~ One reason for this difference is that in the m = 3 bootstrap 
percolation problem two voids of rectangular shape must be separated by 
two  fully occupied lines in order to be stable, whereas in the c3n diffusion 
percolation problem a s ingle  line is sufficient. 

5. E X P L A N A T I O N  OF T H E  SIZE EFFECT 

The rectangular-cluster percolation problem underlying the diffusion 
of hard squares on a finite square lattice introduces a characteristic length 
4-= ~o.5 which is large compared with the lattice spacing already at 
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moderate concentrations c (cf. Fig. 4). It is easy to see that this length 
controls the asymptotic behavior of the mean-square displacement at long 
times. Since in samples with a stable cage structure the diffusing particles 
are forever trapped in cages, only samples in which the cages are unstable 
and percolate contribute to the asymptotic linear increase of the. mean- 
square displacement with time. The mean-square displacement at long 
times may therefore be expected to be proportional to the probability to 
percolate p(ch, L) of the rectangular clusters, which is a function of r 
according to finite-size scaling. 

We suggest that ~/L also controls the size effect observed at inter- 
mediate and short times which was described above. The evidence for our 
suggestion is shown in Fig. 5. Here the size dependence of the mean-square 
displacement at different times (t = 10 2, 10 3, 10 5 MCS/particle) is compared 
with that of the probability for rectangular-cluster percolation, viz. for 
absence of stable cages. For each time the mean-square displacements are 
normalized relative to the value obtained in the largest lattice (L=  512). 
The particle concentration is c=0.415. The essential result of Fig. 5 is 
that the reduction with decreasing lattice size of both the mean-square 
displacements and the probability to percolate of the rectangular clusters 
occur within the same range of L values. However, even for the longest 
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time (t = 105 MCS/p) the curve for the mean-square displacement is not 
strictly proportional to that for the probability to percolate. The mean- 
square displacement starts to decrease markedly from the bulk value 
already between L = 256 and L = 128, where the probability to percolate 
still is very close to one. Strict proportionality of the two curves is expected 
to hold only asymptotically. 

One might hope to get rid of the size effect by using only data from 
percolating samples, i.e., by discarding all samples with a stable cage struc- 
ture. In Fig. 6 mean-square displacement curves derived from percolating 
samples only are shown together with those obtained by averaging over all 
samples. The size-dependent reduction of the mean-square displacement 
with decreasing L goes away, but now a size dependence of the opposite 
sign appears! Apparently, by throwing out for small lattice size all samples 
with a cage structure, one also eliminates some of the kinetic restrictions 
present in large percolating samples. It does not seem to be possible to 
avoid a size effect in small lattices by using an ensemble of percolating 
samples only. Despite this puzzling result, however, there is no doubt that 
the formation of stable cages, which is controlled by the rectangular- 
cluster percolation problem, is the principal cause for the observed size 
dependence of self-diffusion in the hard-square lattice gas. 
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APPENDIX.  PROOF OF ABSENCE OF A THRESHOLD FOR 
RECTANGULAR-CLUSTER PERCOLATION ON 
THE SQUARE LATTICE 

The elementary proof presented in ref. 1 is formulated with mathemati- 
cal rigor, avoiding the approximate solution of a recurrence relation. Using 
a growth-of-squares process, a lower bound for the probability to percolate 
is calculated and shown to converge to unity in the thermodynamic limit 
L ~ oo. This result is valid for any nonzero concentration. 

We mention that for the related problem of bootstrap percolation on 
a square lattice with characteristic number rn = 3, van Enter has given a 
proof of the absence of a threshold at nonzero hole concentrations. (17) With 
a slight modification, his proof can be extended to the case of rectangular- 
cluster percolation. (14) Compared with van Enter's proof, which is based on 
a theorem of ergodic theory, the proof presented here is direct and more 
transparent. 

We first consider a finite lattice of size L x L. In the context of diffu- 
sion in the hard-square lattice gas we speak of holes which randomly 
occupy the sites of the lattice with probability ch. Periodic boundary condi- 
tions are assumed. We divide the lattice into L subsystems of size 
x fL  x ~ and grow quadratic clusters starting from the centers of these 
subsystems. (1) The growth process is described by an integer variable l 

between 1 and ,,fL. The probability that a quadratic cluster of size l x l 
grows around a particular site is denoted by Pl(Ch). The probability that a 
subsystem is completely covered by the growth process is given by p,/-L(ch). 
A quadratic cluster of size l x I grows by one adjacent line in all four direc- 
tions if in each of these lines there is at least one hole. According to this 
growth rule, the probabilities pI(Ch) obey the recurrence relation 

Pl+ 2(Ch) = pl(Ch)" [ l  - -  ( 1  - -  Ch)l] 4 (A1) 

where p~(ch) = ch. Since the L subsystems do not overlap, the growth pro- 
cesses within them are statistically independent. Therefore the probability 
that at least in one of them a cluster of size x / L  x x / L  is grown is given by 

1 - [1 - p,/z(Ch)3 L (A2) 

Next, one of the subsystems which are completely covered by a square 
cluster is placed in the center of the L x  L system, and the growth-of- 
squares process is continued around this ~ x x / ~  cluster. The probability 
that the process does not stop before the whole L x L lattice is covered 
amounts to 

pL(c~) 
p,/-i(ch) (a3)  
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Combining expressions (A2) and (A3), we find the probability for obtaining 
a covering cluster of size L x L to be 

{1 - [1 - - p , / z ( C h ) ] L } -  pL(Ch) 
p,/Z(C~) 

(A4) 

Since the growth-of-squares process neglects the occurrence of non- 
quadratic clusters and the growth by overlap of clusters, (A4) represents a 
lower bound to the probability to percolate for rectangular clusters in an 
L x L lattice. To prove that this lower bound converges to unity in the 
thermodynamic limit, it is sufficient to show that pt(ch) converges to a non- 
zero limit p~(ch) for l ~  oe. Since pt(ch) decreases monotonically with 
increasing l, a lower bound to (A4) is 

{ 1 - - [ 1 - - p ~ ( c h ) ] L } "  - PL(Ch) 
p,/z(ch) 

(A5) 

which converges to unity for L --* oe since the convergence ofpt(ch) implies 
that pL(Ch)/P./Y(Ch) ---' 1 for L --, oe. The convergence ofpt(ch) to a nonzero 
limit is proved using the ratio test for lnpt(ch). From the recurrence 
relation (A1) we derive the infinite series 

lnpo~(ch)=lnpl+4 ~ l n [ 1 - ( 1 - c h )  2~ 1-] (A6) 
/ = 1  

Because of 

l n [ 1 - ( 1 - e D  2 '+ ']  , ~  
l n [ l _ ( l _ c h )  2z 1-1 , ( 1 - e h ) Z < l  for c h > 0  (A7) 

the series converges for any nonzero hole concentration c h by the ratio test. 
Obviously, In p~ is negative, so that 

0 < p~(ch) < 1 (A8)  

holds. This completes the proof that the probability to percolate for 
rectangular clusters is unity in the thermodynamic limit for arbitrary finite 
(hole) concentration. 
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